

Unsupervised Natural Language Inference Using PHL Triplet Generation Neeraj Varshney, Pratyay Banerjee, Tejas Gokhale, Chitta Baral Arizona State University, USA

Natural Language Inference (NLI)

Given a Premise-Hypothesis pair (P, H), identify whether the hypothesis is true (Entailment), false (Contradiction), or undetermined (Neutral) given the premise.

Premise: A man and a lady are talking in the park.

Hypothesis 1: A man and a lady are talking outdoors. **Hypothesis 2:** People are sitting quietly in the park. **Hypothesis 3:** A father is talking to his daughter in park.

Entailment Contradiction <u>Neutral</u>

NLI Training Paradigms

Supervised: Labeled data instances are provided for training.

PHL Triplet Generation for Unsupervised NLI

- Instances are typically collected via crowdsourcing.
- Crowd-workers are given a set of premises and asked to create a hypothesis corresponding to each NLI label.
- Data Collection is **resource intensive** and **time consuming**. ullet

Unsupervised: Labeled instances are <u>not</u> available for training.

- **PH-Setting** : Unlabeled premise-hypothesis pairs are available.
- **P-Setting** : Only premises (partial inputs) are available.
- **NPH-Setting**: Neither premises nor hypotheses are available.

A sentence is treated as a **premise** and multiple hypotheses conditioned on each label (Entailment- E, Contradiction- C, and Neutral- N) are generated using a set of **sentence transformations**.

Training NLI model for each Setting

ullet

For **supervised** setting, the provided labeled dataset is used for training. For **unsupervised** settings, we procedurally generate PHL triplets to train NLI model.

- In **NPH**-setting, a premise pool is collected from raw text corpora such as Wikipedia and then PHL triplets are generated using the premises.
- In **P**-setting, we directly apply **PHL method** on the available premises.

PH

{(Pi, Hi)}i=1..M

Training Data: Pseudo-label using (Model) with MaxProb Filtering

Pseudo-labeled and Filtered Data

TRAIN (Model)PH In **PH** setting, we leverage the P-setting model to **pseudo-label and filter** the provided unlabeled PH pairs for training.

Per	formar	Performance in Low-Data Regimes															
Approach	SNLI	MNLI mat.	MNLI mis.	DNLI	BNLI	Training Dataset	Method	1 SNLI	<u>00</u> MNLI	SNLI ²	<u>00</u> MNLI	5 SNLI	<u>00</u> MNLI	<u>1(</u> SNLI	000 MNLI	<u>20</u> SNLI	000 MNLI
BERT* LXMERT* VilBort*	35.09 39.03	-	-	-	-	SNLI	BERT NPH (Random) NPH (Adv.)	44.62 64.82 68.21	37.36 49.72 51.93	48.97 65.06 69.23	34.71 50.48 56.55	58.54 66.97 70.85	44.01 52.33 58.46	65.36 70.61 73.62	37.24 56.75 59.47	72.51 73.7 74.31	45.59 59.0 60.43
$\frac{\text{MACD}^*}{\pi(\text{SNL})}$	43.13 52.63	-	-	-	-	MNLI	BERT NPH (Random)	35.12 63.87	36.01 52.85	35.14 63.87	36.58 53.61	46.16 64.23	47.1 57.47	47.64 65.62	56.21 60.42	53.68 66.87	63.3 62.89
$ \begin{array}{c} \mathcal{T}(SNLI) \\ +\mathcal{T}(\mathcal{P}(C)) \\ +\mathcal{T}(\mathcal{P}(R)) \end{array} $	65.72 65.36 65.90	49.56 49.91 48.53	50.00 49.24 48.36	43.27 46.25 44.97	67.78 70.07 66.43	In lowFurthe	-data regimes er fine-tuning	, a fe v our mo	w labe odel wit	e led ins th the	stances provide	are pi d labe	rovided led inst	for tratances	aining t achie v	:he NL] ves su	i model perior

- **MACD** (a baseline method) performs multi-modal pretraining using COCO and Flickr30K captions for the unsupervised NLI task.
- Our proposed approach **outperforms** the previous best method by $\sim 13\%$ on SNLI.
- Adding PHL triplets generated from COCO
- 500 adversarial instances (~0.1% of SNLI), our method achieves 70.85% accuracy. This suggests possibility of an **alternative data collection strategy** that results in high-quality instances and is resource efficient.

performance over the model that is trained from scratch on these provided instances.

Performance improves further on using **adversarial** instances for finetuning. With just

Specifically, a dataset designer can develop a set of simple transformations to procedurally generate data, train a model using this generated data and instruct humans to create adversarial instances over this model.

and ROC to the training dataset **further**

improves the accuracy to 65.90%.

In all three unsupervised settings, our •

approach achieves **SOTA performance.**

